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.About Climateurope2 
 
Timely delivery and effective use of climate information is fundamental for a green recovery and a 
resilient, climate neutral Europe, in response to climate change and variability. Climate services address 
this through the provision of climate information for use in decision-making to manage risks and realise 
opportunities. 
 
The market and needs for climate information has seen impressive progress in recent years and is 
expected to grow in the foreseeable future. However, the communities involved in the development 
and provision of climate services are often unaware of each other and lack interdisciplinary and 
transdisciplinary knowledge. In addition, quality assurance, relevant standards, and other forms of 
assurance (such as guidelines, and good practices) for climate services are lagging behind. These are 
needed to ensure the saliency, credibility, legitimacy, and authoritativeness of climate services, and 
build two-way trust between supply and demand. 
 
Climateurope2 aims to develop future equitable and quality-assured climate services to all sectors of 
society by: 
● Developing standardization procedures for climate services 
● Supporting an equitable European climate services community 
● Enhancing the uptake of quality-assured climate services to support adaptation and mitigation to 
climate change and variability 
 
The project will identify the support and standardization needs of climate services, including criteria 
for certification and labeling, as well as the user-driven criteria needed to support climate action. This 
information will be used to propose a taxonomy of climate services, suggest community-based good 
practices and guidelines, and propose standards where possible. A large variety of activities to support 
the communities involved in European climate services will also be organised. 
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Executive Summary 
This deliverable collects examples of best practices about uncertainty quantification and 
communication in climate services, largely drawing from existing literature and reports. Examples and 
best practices were also collected from the Climateurope2 community during an online workshop on 
communicating climate uncertainty, held in November 2023.  
 
The document is organised in two main parts, discussing the current state-of-the-art and best practices 
in uncertainty quantification (Chapter 2), and uncertainty communication (Chapter 4). The deliverable 
also looks into emerging strategies to deal with deep uncertainties, i.e. those that cannot be quantified 
(Chapter 3), and it also discusses a number of recent real-world examples for assessing, quantifying 
and communicating uncertainty in climate information (Chapter 5).  
 
A set of eight main lessons learnt regarding preliminary best practices in climate uncertainty 
assessment and communication can be summarised as follows (see Chapter 6 for more details): 
 

1. Always start with the most relevant risks for the target population 
2. A standard approach to uncertainty assessment and communication is needed 
3. Use language the audience is familiar with (don’t say uncertainty) 
4. There are multiple ways to evaluate and communicate uncertainty 
5. Communication about uncertainty builds trust 
6. Precision of information should be relevant to the situation 
7. Understand existing narratives 
8. Be aware of deep uncertainties 

 
 

Keywords 
Climate services, Uncertainty, Communication, Risk, Assessment, Vulnerability 
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1 Introduction 
 
Uncertainty is inherent to climate information and accounting for and communicating uncertainty is 
therefore of paramount importance to the development and implementation of climate services. 
Within the Climateurope2 project, Task 4 of Work Package 2 is looking at methods and practices for 
uncertainty and risk assessment methods to enhance the trustworthiness of climate services in climate 
adaptation and the management of climate risks. For the identification of risk is the starting point for 
climate action. 
 
The ultimate objective of Task 4 is to develop guidelines for gathering and propagating uncertainty 
assessment on the whole value chain including uncertainty communication and uncertainty 
assessment for risks, trends and extremes. This includes modelling strategies and methods of 
uncertainty quantification in climate predictions, projections and forecasts as well as uncertainties 
introduced in the processing of data (such as bias adjustment) and the impact assessment that often 
underpins climate risk analyses. The task will also explore optimal communication approaches to 
enhance the usability of uncertainty information and thus the understanding of it by both those 
providing and those using climate services. 
 
The aim of this report is to collect examples of best practices in uncertainty quantification and 
communication in climate services as well as related fields. The report draws largely from existing 
literature and reports. Examples and best practices were also collected from the Climateurope2 
community during an online workshop on communicating climate uncertainty that was held in 
November 2023. During the workshop, participants discussed how users of climate information deal 
with uncertainties and how providers of climate services should communicate about uncertainties in 
ways that enable users to extract the information they need. 
 
The report is divided into two main parts, discussing the current state-of-the-art and best practices in 
uncertainty quantification (Chapter 2) and communication (Chapter 4). The report also looks into 
emerging strategies to deal with deep uncertainties that cannot be quantified (Chapter 3). It discusses 
a number of recent examples in practice for assessing, quantifying and communicating uncertainty in 
climate information (Chapter 5). Finally, the report will identify some emerging themes (Chapter 6). 
 

1.1 Uncertainty: concepts and definitions  
The word “uncertainty” means different things to different people, and in different contexts. In 
statistics and data science, for example, uncertainty is often used in relation to the dispersion of data 
points and may be quantified as variance or standard deviation. In a broader context, uncertainty is 
often used to refer to the unpredictability of future events and their potential impact on decision-
making. 
 
Based on earlier assessment reports, the Intergovernmental Panel on Climate Change (IPCC, 2021) 
defines the concept of uncertainty as:  
 

“A state of incomplete knowledge that can result from a lack of information or from 
disagreement about what is known or even knowable. It may have many types of 
sources, from imprecision in the data to ambiguously defined concepts or  terminology, 
incomplete understanding of critical processes, or uncertain projections of human 
behaviour.”  
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Uncertainty may also arise through the processing of data, for example by interpolation (e.g. a 
statistical or physical model-based interpolation of a field between available estimates to create a more 
spatio-temporally complete estimate), or when estimating trends. Uncertainty may be represented by 
quantitative measures (e.g. a probability density function) or by qualitative statements (e.g. reflecting 
the judgement of a team of experts) (IPCC, 2021). 
 
At a fundamental level, a distinction can be made between aleatory uncertainties that can be treated 
as a random variable and may be expressed in terms of probabilities, and epistemic or deep 
uncertainties that include concepts such as ambiguity, reliability, inconsistency and surprises which  
are not easily represented as probabilities (Beven et al., 2018a). The IPCC 6th Assessment Report also 
acknowledges the concept of deep uncertainty (IPCC, 2021): 
 

A situation of deep uncertainty exists when experts or stakeholders do not know or 
cannot agree on: (1) appropriate conceptual models that describe relationships among 
key driving forces in a system; (2) the probability distributions used to represent 
uncertainty about key variables and parameters; and/or (3) how to weigh and value 
desirable alternative outcomes. 

 
Deep uncertainty, therefore, refers to a state of incomplete knowledge and understanding that goes 
beyond standard (aleatory) uncertainty. It involves fundamental ambiguity about the underlying 
system, its dynamics, and the relevant decision-making context.   
 
 

1.2 Sources of uncertainty in the climate -impact modelling 

chain 
Uncertainty may arise in all stages of a typical climate services value chain, starting with the climate 
data itself. Even if the climate information is based on observations, there will be some uncertainty 
arising from measurement error or interpolation of point measurements to larger areas, among other 
sources.  
 
When dealing with information about future climate change, it is common to discriminate three main 
sources of uncertainty: natural variability, scenario uncertainty and model uncertainty (see, e.g. 
Hawkins & Sutton 2009, 2011). The relative importance of these three sources is not static but 
depends on the time horizon of interest (Figure 1.1), the study region and the variable under 
consideration. Natural variability is especially important at shorter timescales (i.e. years to decades) as 
it may mask any longer-term changes and trends. Nonetheless, the interaction between natural climate 
variability and climate change can non-linearly impact uncertainty of extreme values across timescales 
(e.g. by modifying the tails of the distribution or the type of distribution itself). 
 
At longer timescales, climate projections are uncertain first and foremost because we are uncertain 
about future levels of greenhouse gas emissions and concentrations, which in turn depend on the 
ambitions and implementation of climate policies, and on how human society will develop. Projections 
of long-term climate change are therefore based on a set of assumptions, or scenarios, about how 
these factors will evolve. The sixth assessment report of the IPCC adopted five Shared Socio-economic 
pathways (SSPs) that examine how global society, demographics and economics might change over 
the next century (Riahi et al., 2017).   
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Uncertainty also arises from the use of models. It is common to subdivide uncertainty within the 
modelling process into (1) uncertainty about the model structure or, in other words, about how to 
represent the physics of the system; (2) uncertainty about the input data and model parameter values, 
which extends to the data used for model calibration and evaluation; and (3) the residual 
unpredictability of events for given models and parameters. 
 
A fourth source of uncertainty is particularly relevant in seasonal to decadal climate prediction, and 
relates to the initial conditions, where small errors in the initial state of the model can grow into marked 
differences in the development of the climate system (Suckling 2018). 

 
Figure 1.1: Sources of uncertainty in climate projections as a function of time horizon based 
on analysis of CMIP5 results, presented as a plume (a) and as a fraction of the total variance 
(b).  (a) Projections of global mean decadal mean surface air temperature to 2100 together 
with a quantification of the uncertainty arising from internal variability (orange), model 
spread (blue) and RCP scenario spread (green). (b) Fraction of variance explained by each 
source of uncertainty. Note Figure (b) could be misinterpreted as showing that model spread 
is decreasing after the 2030s, while in fact it keeps growing throughout the century. From 
Chapter 11 of the IPCC WGI AR5 and Hawkins and Sutton (2009, 2011).  
 
 
However, uncertainties not only arise in the production of climate data and information. It is important 
to consider the entire value chain, which includes data processing steps such as bias correction and 
downscaling; impact modelling and assessment; risk evaluation; and adaptation responses (Wilby & 
Dessai (2010). Each component in this “cascade” will have its own associated uncertainties (Beven et 
al. 2018a; see also Kundzewicz et al., (2018) and Dankers & Kundzewicz (2020) for a more 
comprehensive discussion).  Even the communication of information may add uncertainty as a 
recipient may not understand or interpret the climate information as intended by the producer. 
 
Walker et al. (2010) describe a categorisation system for uncertainty which discriminates among three 
dimensions: location, level and nature of uncertainty (Figure 1.2). The location of the uncertainty, in 
this context, describes its position in the modelling pipeline (the layers of the cascade of Wilby and 
Dessai, 2010). The nature of the uncertainty describes whether the uncertainty primarily stems from 
knowledge imperfection (epistemic) or is a direct consequence of inherent variability (aleatory). The 
level (or degree) of uncertainty is about where uncertainty manifests itself on the gradual spectrum 
from determinism, through probability and possibility to ignorance (Dessai and Hulme 2003). Van Bree 
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and Van der Sluijs (2014) expand the three-dimension model further to also include qualification of 
knowledge base and value-ladenness of choices. The first (qualification of knowledge base) relates to 
the evidence and reliability of the information used, the latter (value-ladenness of choices) to the 
extent to which choices made in the assessment are subjective. 
 

 
Figure 1.2: Three dimensions to categorise uncertainty: location, nature, and level (degree). 
Modified after Walker et al. (2010), Wilby and Dessai (2010).  
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2 Current practices in uncertainty quantification 
 
To ensure transparency and maintain trust in a climate service, it is essential that uncertainties are 
evaluated, documented and - to the extent possible - quantified, even if they cannot be reduced. 
Various approaches have been developed over the years to evaluate the uncertainty in the different 
parts of a typical climate-impact modelling chain, many of which can also be applied in climate services. 
Van Bree & Van der Sluijs (2014) list a number of methods and approaches that have been used in 
climate change and adaptation decision making, including (in no particular order): 
 

• Scenario analysis 
• Expert elicitation 
• Sensitivity analysis  
• Monte Carlo simulations 
• Multi-model ensemble analysis 
• Bayesian methods 
• Numerical Unit Spread Assessment Pedigree 
• Fuzzy sets / imprecise probabilities 
• Stakeholder analysis 
• Quality assurance / quality checklists 
• Extended peer review / review by stakeholders 
• Wild cards / surprise scenarios 

2.1 Uncertainty quantification in climate modelling  
 

2.1.1 Multi-model ensemble 
The standard way to evaluate climate model structural uncertainty has been through model 
intercomparisons, notably in the various phases of the Coupled Model Intercomparison Project (CMIP) 
that have been organised since 1995. By running experiments in a standardised way, model 
intercomparison projects (MIPs) allow the creation of a multi-model ensemble that can be used to 
explore the effect of structural uncertainty in the model formulation on the simulation of a key 
variable, such as global mean temperature. Assuming the sample of models is large enough, the 
performance of the ensemble as a whole can be summarised using statistics such as the ensemble 
mean, which in many cases has been found to outperform any individual model when comparing with 
observations. 
 
However, care must be taken when analysing the results of multi-model ensembles, as the usual 
statistical assumptions may not hold. Many multi-model ensembles are in fact “ensembles of 
opportunity” and were not designed for such a statistical analysis at the outset. A key concern is to 
what extent these models can be considered independent. For the Coupled Model Intercomparison 
Project CMIP5 ensemble of General Circulation Models (GCMs), Knutti et al. (2013) established that 
many GCMs were not only strongly tied to their predecessors, but also exchanged ideas and code with 
other models, implying that the CMIP5 models were neither independent of each other nor 
independent of the earlier generation.  
 
As there are likely some overlaps in the results from the individual models, and because working with 
the full ensemble is often not practical - the latest CMIP6 contains results from over 100 models - 
various techniques have been proposed in the literature to either select a representative sample of 
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GCMs or to weight the results from different models differently. Model selection or weighting can be 
done according to a number of criteria, including: 
 

• Realism in simulating the historical climate (i.e., model performance); 
• Representativeness of the spread in future projections; 
• Independence of models.  

 
The ‘optimal’ set of models will be different for different regions and dependent on the variable or 
variables of interest (see e.g. McSweeney & Jones, 2016). More recently, approaches based on 
information theory (Pechlivanidis et al., 2018) and expert elicitation (Sebok et al., 2022) have also been 
proposed. 

2.1.2 Perturbed-parameter ensemble  
A second type of ensemble has been applied to study the effect of uncertainty in model parameters 
on climate impact projections. In “perturbed-parameter” ensembles (Murphy et al. 2007; Frame et al. 
2009), a single GCM is run multiple times with different values for some of the key parameters. Due 
to computational limits, a formal sampling of the full parameter space is out of reach for state-of-the-
art, complex earth system models. In practice, the key parameters and parameter values are chosen 
from ranges considered plausible on the basis of expert judgement. Statistical methods have also been 
used to estimate the set of projections that would be produced if more comprehensive sampling of 
parameter uncertainty in the model could be performed (see, e.g. Sexton et al. 2012). More recently 
methods have been proposed to pre-filter the parameter space by finding plausible candidates from a 
large set of cheaper, coarse-resolution atmosphere-only simulations, at the same time ensuring 
sufficient diversity with respect to some predefined climate change metrics (Sexton et al., 2021). The 
experimental setup of perturbed-parameter ensembles allows for a more formal statistical analysis of 
the results; however the results are usually limited to a single model only. In other words, model 
structural uncertainty is not accounted for. A common finding from these studies, though, is that the 
uncertainty range in perturbed-parameter ensembles overlaps with those of multi-model ensembles. 

2.1.3 Initial condition ensemble  
A third type of ensemble samples the uncertainty in the initial conditions at the start of a model run, 
as small errors in the initial state can grow into marked differences in the development of the climate 
system. Apart from numerical weather prediction, this type of ensemble modelling is used primarily at 
seasonal to decadal timescales, where uncertainty due to natural variability in the climate system 
dominates. However, initial conditions ensembles have also been used at longer timescales to explore 
internal variability in the model and to better evaluate changes in the likelihood of very extreme events 
(e.g. Maher et al., 2019). Taken at “face value”, the probability of an event may be estimated as the 
relative frequency of its occurrence among the ensemble members (Katz & Ehrendorfer, 2006). In 
practice, though, it is important to account for biases as initial condition ensembles do not sample all 
of the model parameters or structural uncertainty. For this reason, seasonal forecasts are increasingly 
based on a multi-model evaluation as well. Moreover, it is essential to use information about the past 
performance of a forecasting system, typically available in the form of hindcasts to try to correct for 
model drift, biases and spread deficiencies and, ideally, to transform raw ensemble results into 
estimates that are descriptive of the true probabilities of an event (Parker, 2010). The large number of 
simulations that are available from hindcasts has also been used to more robustly estimate the 
likelihood of very extreme (and therefore rare) events (e.g. Ehmele et al., 2020; Kelder et al., 2020). 
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2.2 Uncertainty quantification in climate data processing  
The various processing steps typically applied to climate model data, including downscaling and bias 
correction, also have the potential to add uncertainty to the results. Although the limitations of the 
assumptions underpinning most bias correction techniques (and, by extension, statistical downscaling 
methods) have long been recognised (e.g. Ehret et al., 2012;  Maraun et al., 2017), the effect of these 
on the outcomes of an analysis are often not assessed. The impact of the choice of different bias 
correction methods has been investigated in a number of studies, particularly in hydrological 
applications (e.g. Chen et al., 2011, 2013; Senatore et al., 2022), although it is still not common 
practice. Often the contribution of the bias correction method to the overall uncertainty in the results 
is found to be relatively smaller than the climate model or the scenario uncertainty, but in some cases 
the bias correction even changed the direction of the climate signal that was present in the original 
climate simulations (e.g. Huang et al., 2014). 

2.3 Uncertainty quantification in climate impact assessment  
Similar to climate modelling, the uncertainty associated with the use of climate impact models can be 
evaluated through model intercomparisons, as is done in, e.g. the Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP,  https://www.isimip.org/). Comparatively fewer studies have looked 
at the effect of impact model parameter uncertainty, although techniques for quantifying both 
structural and parameter uncertainty, such as the Generalized Likelihood Uncertainty Estimation 
(GLUE) method (Beven & Binley, 1992) have been around for several decades. Most of these 
techniques rely on Monte Carlo simulations or similar approaches with the simulation results 
expressed as probability distributions of possible outcomes, as opposed to a single deterministic 
prediction. 
 
Fewer studies still have made a thorough end-to-end assessment of the uncertainties involved in the 
entire climate-impact modelling chain looking at all contributing factors,, as was done for the entire 
flood risk chain by Metin et al. (2018) or for hydrological impacts of climate change in Nepal by Aryal 
et al. (2019).  
 
While most studies adopt a “top-down” approach exploring the accumulation of uncertainty from 
emission scenarios to global climate response to regional or local impacts, some have also proposed a 
“bottom-up” approach starting from the impacted system and exploring how resilient it is to changes 
and variations in one or more climate variables (Van Bree & Van der Sluijs, 2014). Such a bottom-up 
approach is focused more on resilience of the system and how adaptation can make it less prone to 
uncertain and largely unpredictable changes in climate.  
 
An example of a more bottom-up approach is the use of impact-response surfaces where an impact 
model is used to evaluate the response of a system across a range of conditions. Not only does this 
allow for a more rigorous testing of the impact models (across many possible future conditions), but it 
also makes it possible to identify critical impact thresholds which might be missed if only a few climate 
scenarios are evaluated (Fronzek et al., 2022). Examples of this approach include the scenario-neutral 
approach proposed by  Prudhomme et al. (2010) for fluvial flood impacts in the UK; and the application 
of response surface diagrams for evaluating climate change impacts on crop production by Van Minnen 
et al. (2000). Pirttioja et al. (2019) used a similar approach to evaluate adaptation options to crop yield 
shortfalls under climate change. 

https://www.isimip.org/
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2.4 Passing uncertainty information on down the value chain  
Especially when using a top-down approach, the different processing steps in a typical climate-impact 
modelling chain can give rise to what has been called a “cascade of uncertainty” (Wilby & Dessai, 2010; 
Figure 2.1). 
 

 
Figure 2.1: The cascade of uncertainty illustrating the potential growth of the envelope of 
uncertainty and the scale of the uncertainty provenance task. In practice, a bottom -up 
approach that begins with climate impacts will reduce the communication challenge to  a set 
of discrete pathways. Modified after Wilby and Dessai (2010).  
 
 
Uncertainty information is generated upstream and passed on downstream. Each step of the cascade 
(or value chain) will have uncertainty associated with it that needs to be passed on and understood by 
all subsequent users of the data or information.  
 
While a climate service may need to keep a provenance record of the full depth and breadth of the 
cascade of uncertainty for its data holdings (Figure 2.1), the specific uncertainty information to be 
communicated for any one study will only be that which is representative of the actual data used, and 
tailored to the intended audience, careful documentation of the assumptions of a study 
notwithstanding.  
 
Each step in the cascade or value chain represents a different community of practice, so uncertainty 
information may need to be understood by actors that are far removed from the original work.  
Metadata ontologies such as the Simple Standard for Sharing Ontological Mappings (SSSOM) 
(Matentzoglu et al. 2022) provide a potential framework for maintaining a shared understanding of 
uncertainty information throughout the value chain. SSSOM is analogous to the I-ADOPT 
interoperability framework for observable properties developed by the Research Data Alliance (RDA) 
working group for InteroperAble Descriptions of Observable Property Terminology (Magagna et al., 
2021) described in Climateurope2 Deliverable 2.1. However, SSSOM is also able to explicitly capture 
the imprecision, inaccuracy and incompleteness of mapped concepts. 

2.4.1 Uncertainty in decision making frameworks  
One of the reasons why uncertainty information needs to be passed along the value chain is that it has 
the potential to make a difference to the decision that is being targeted by the climate service. At the 
same time, an uncertainty assessment has to be appropriate to the type of the decision being made, 
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because of the time and effort being involved (Beven et al., 2018b) and the demands of clear 
communication. 
 
If the level of uncertainty can be described probabilistically, a classic risk approach (e.g. a cost-loss 
decision model) may be used. However, in a climate change context, this is rarely the case. The main 
drivers of climate change (which include economic development and population growth) are inherently 
uncertain, especially at the longer term, and can only be explored using a scenario approach. Moreover, 
at a detailed level our understanding of the Earth system is rather incomplete which may give rise to 
surprises, unforeseen effects and unanticipated impacts (sometimes referred to as ‘ignorance’). 
Therefore, decision-making frameworks are needed that can cope with scenario uncertainty and 
ignorance. Van Bree & Van der Sluijs (2014) describe three steps to account for uncertainties in a 
decision framework: 
 

1. Identify and characterise sources of uncertainty; 
2. Assess (weigh, appraise, and prioritise) sources of uncertainty; 
3. Select and apply methods for dealing with uncertainties. 

 
The first step is likely to result in a long list of uncertainty sources and could be approached by 
analysing each step of the value chain or assessment process, or by considering where in the 
assessment the different types of uncertainty may occur. 
 
In the second step, the relative importance of each uncertainty source can be evaluated by its impact 
on the final decision or outcome. This may be done by performing a sensitivity analysis or, if 
quantification is not possible, could be based on expert judgement.  
 
In the third step, some of the key uncertainties and their impact on the final decision may be analysed 
and characterised in more detail. Van Bree & Van der Sluijs (2014) highlight that the uncertainties will 
need to be re-evaluated throughout the assessment process, as it may not be possible to identify, 
prioritise and characterise all sources of uncertainty right at the start.  
 
To be useful in a decision-making process, the uncertainties obviously need not only to be analysed 
and described, but also communicated to the decision- or policy-maker. It is therefore important to 
evaluate which uncertainties are most relevant for the decision at hand, and - if relevant - identify 
options that are robust given these uncertainties (Van Bree & Van der Sluijs, 2014). The way that 
information is presented can also have an impact on its interpretation and the decisions that are made 
on the basis of it. To avoid misinterpretation, decision makers should be provided with a fuller 
understanding of the context of the information that is given to them, yet not so much information 
that it would overload them. For instance, to limit the overload potential it can be useful to have a 
range of methods with which to communicate uncertainty and then to use those methods that are 
most relevant to the situation.   
 
Some practical examples of how uncertainty information is used to inform climate adaptation decisions 
can be found in Lourenço et al. (2014). 
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2.4.2 Example of passing uncertainty information on through the 
value chain 

An example of how quantitative uncertainty information can be used in decision-making is provided 
in this section.  
 
Technical products provided today by National Meteorological Services and  related institutes mainly 
involve forecasts of precipitation and mean, maximum and minimum temperature. These products lead 
in general to different managerial actions for different sectors, and therefore stakeholders normally 
need to go one step further in order to use them for their specific interests, for a hazard only becomes 
a risk if there is a vulnerability to it. 
 
Therefore, a hazard-oriented approach alone is not enough because of its lack of information on the 
local sensitivity, exposure and adaptive capacity of the population. An adequate, comprehensive 
approach requires risk assessment, involving the difficult problem of satisfactorily quantifying both 
hazards and vulnerabilities for the specific sector (e.g. water availability, agriculture, health or energy 
managements), region of the world, and time scale (e.g. short-term, intraseasonal, seasonal, decadal, 
long-term) of interest (e.g. Muñoz et al. 2012). Unfortunately, due to the complicated character of the 
addressed problem, there is no unique methodology to quantify the risk, and different approaches are 
employed for different activities.  
 
These issues make it extremely difficult to compare risk indices on different regions of the world, or 
even among different sectors (e.g. agriculture and health) for the same geographical region. Moreover, 
in the cases where risk estimations are available, they tend to exclude information on the associated 
uncertainties. 
 
A way to circumvent these problems is to use a probabilistic risk management approach (e.g. Mora and 
Keipi, 2006; Mora, 2009; Muñoz et al., 2012), which permits to operationally define a probabilistic 
vulnerability distribution that is by construction consistent with both the hazard and risk probability 
density functions. At its core, this approach directly identifies risk with key indicators for decision 
makers, such as damage or cost, for which real data exists, and from which an empirical (or fitted)  
probability distribution can be obtained. 
 
To illustrate the case with a real-world example, consider the annual, total maïze yield production (in 
hectograms by hectare, Hg/Ha) for Guatemala, from 1961 to 2005 (Figure 2.2).  The maïze yield can 
be translated into damage cost, for example in hundred of thousands US$, and a probability density 
function describing the probability distribution can be directly defined from the data record. For the 
sake of simplicity, assume that such a distribution follows a Gaussian distribution (as in the Figure 2.2) 
–nonetheless the distribution does not need to be a Gaussian one. In that case, a natural measure of 
uncertainty is provided by the dispersion parameter of the distribution, or the standard deviation in 
this case.  
 
A similar approach can be followed for the hazard, which in the example of Figure 2.2 is measured via 
the Palmer Drought Standardised Index (PDSI), which also conveys information on the related 
uncertainties via the corresponding probability distribution (see example in Figure 2.2). 
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Figure 2.2: Illustration on how to define the risk and hazard probability density functions 
and related definitions of risk, using real maïze yield data for Guatemala (green time series 
curve). In this example, the key hazard is related to droughts, as measured by  the Palmer 
Drought Standardised Index (PDSI, blue time series curve).  
 
 
 
 
As suggested by Muñoz et al (2012), it is obvious that, given that the probability density functions for 
the risk and the hazard are known, a risk manager can mathematically define the associated 
vulnerability’s probability density function that is consistent with both the risk and the hazard ones.  
Furthermore, it is possible to then define which vulnerability distribution is required to obtain a risk 
distribution that the decision makers can cope with, i.e. a re-engineering of the vulnerability 
distribution given the knowledge of the present and future hazard distribution, and considering the 
desired or manageable risk distribution (Muñoz et al., 2012). For example, the risk manager might want 
to have a distribution that provides the most part of the probability distribution that corresponds to  
low values of risk. A possible choice for such a probability distribution is the exponential distribution 
(on the left panel of Figure 2.3). 
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Figure 2.3: Conceptual example illustrating the re-engineering of vulnerabilities and 
management of the related uncertainties.  
 
Overall, the approach enables decision makers not only to quantitatively assess risk and the related 
uncertainties, but also to support the choice of strategies and tasks that will help achieve a certain 
desired vulnerability distribution (that translates into concrete exposure, sensitivity and adaptive 
capacities for the population). 
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3 Strategies for deep uncertainties 
 

3.1 Understanding deep uncertainty 
When a system is well understood and there are good measurements available, then uncertainty can 
be presented using statistical methods and probabilities as is commonly the case for weather forecasts. 
Uncertainties associated with limited knowledge, for example about future socio-economic and 
technological developments and about certain aspects of the climate system, are more appropriately 
conveyed with the use of scenarios that indicate “what if” situations. 
 

 
Figure 3.1: Continuum of uncertainty. The realm of probabilities and other methods to 
represent uncertainty when comparing the knowledge about outcomes with the knowledge 
about likelihoods. Modified after Dessai and Hulme (2003), Stirling (1998).  
 
 
Epistemic or deep uncertainty refers to a state of incomplete knowledge and understanding that goes 
beyond standard uncertainty. It involves fundamental ambiguity about the underlying system, its 
dynamics, and the relevant decision-making context. This concept is related to the notion of “vague 
uncertainties” of Budescu and Wallsten (1987) and similar concepts dating back to at least the 1920s. 
Deep uncertainty is often characterised by the inability to assign precise probabilities to future events 
or to fully comprehend the system's complexity. It often involves unknown unknowns, where potential 
future scenarios and their likelihoods are difficult to define. 
 
Deep uncertainty challenges traditional decision-making frameworks that assume a known and 
probabilistic future, requiring approaches that can navigate ambiguity, embrace scenario thinking, and 
incorporate adaptive strategies to account for the inherent unpredictability of certain situations. It also 
has implications for communication as overly precise numerical expressions of the likelihood of a 
particular event or outcome are potentially misleading.  
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3.2 Accounting for deep uncertainty 
A common approach to navigating and dealing with deep uncertainty is employing scenarios. Scenarios 
involve the creation of plausible and divergent narratives or storylines that outline different potential 
futures. By exploring a range of scenarios, decision-makers can better understand the spectrum of 
possible outcomes and prepare adaptive strategies that are robust across various eventualities. 
 
There is no single way of establishing the impact of deep uncertainty on the outcomes of a risk analysis 
in a more quantitative sense, although methods have been proposed that allow combining probability 
distributions with measures of belief and disbelief, such as the Dempster-Shafer method or subjective 
logic. 
 
Beven et al. (2018a) suggested that good practice requires that assumptions that have been made 
during the analysis about the sources and nature of uncertainties are recorded and communicated to 
the users. For robust decision making, it will be important to examine the sensitivity of the decisions 
to alternative assumptions that could have been made, to communicate the meaning of the associated 
uncertainty estimates, and to provide an audit trail of the analysis (Beven et al., 2018b).   
 
A formal elaboration of this idea can be found in a recommended practice for assurance of simulation 
models that was compiled by the accredited registrar and classification society DNV (2021). By 
combining information about the uncertainty associated with the model with an assessment on the 
consequences of a possible wrong decision that the model is supporting, the risk associated with  the 
use of the model on the outcome can be evaluated (Figure 3.2). The categorisation of the 
consequences obviously depends on the context and may need to be coordinated with the user, for 
example for safety issues a minor could mean “one or more minor injuries” and catastrophic “multiple 
fatalities.” 
 

 
Figure 3.2: Risk matrix combining a categorisation of the uncertainty associated with the 
use of a particular model with a categorisation of the consequences. Source: DNV (2021).  
 
 
DNV also recommend using uncertainty shaping factor checklists to understand and classify 
uncertainty (the vertical axis in the matrix; DNV, 2021). Such checklists could be adapted for use in 
climate services.   
 
Identifying and evaluating the effect of the assumptions that have been made as part of the process is 
therefore an important part of any risk assessment, yet it can be challenging as many assumptions are 
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tacit and not explicit. People involved in the process may not even know that they have made 
assumptions, yet the assumptions have the potential to obscure a major part of the risk. 
 
Assumptions occur at each step of the risk assessment process, from defining the scope, to selecting 
a workflow within that scope, to summarising the results with metrics. An awareness of where 
assumptions can occur and a systematic way of checking whether assumptions have been made can 
be very insightful.  
 
One way to assess how critical assumptions are is through a method called assumption-deviation risk. 
Flage (2019) provides a framework for quantifying the criticality of a risk assessment’s assumptions 
based on the consequences of a deviation from the assumption along three components (Table 3.1):  
the sensitivity of the conclusion with respect to the assumption; the strength of knowledge (SoK) 
supporting the assumption; and the belief in the possibility of deviations or even violations of the 
assumption. 
 
An assumption with low criticality (setting I) can be considered reliable because there is little 
expectation that it may not be true, it has little impact on the conclusion of the assessment and the 
strength of knowledge that supports it is strong.  Whereas risk assessment metrics based on 
assumptions with high criticality (settings  V and  VI) should be treated with caution. 
 
Table 3.1: Quantification of the criticality of assumptions to risk assessment metrics, after 
Flage (2019). 
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4 Best practices in communicating uncertainties 
 
Communication of (future) climate information can be considered broadly equivalent to the 
communication of risk, especially if the impacts are considered as well. In its simplest form, 
communication can be viewed as the process of sending information or content (such as a message in 
natural language) in some form (e.g. as spoken language) from a sender or source to a receiver. This 
basic model of communication was first formulated by Shannon (1948) and has a long-standing history 
in risk communication and other disciplines, but it has also been criticised as it does not allow for, for 
example, differing purposes or interpretations. 
 
More recently, risk communication is seen as an interactive exchange rather than a one-way transfer 
of information, knowledge and opinions. Höppner et al. (2010) identified five key elements of risk 
communication: actors, purposes, modes and channels, tools and the message itself. As a universal 
principle, the language and terms used have to fit the audience rather than the other way round: an 
expression such as ‘100-year flood’ may be interpreted differently by experts and laypeople. The 
content and the mode of communication has to fit the needs of the audience and the requirements of 
the situation. To increase the credibility of the message it is important to be transparent and 
acknowledge uncertainty. In other words, the content should not only be about what is known, but 
also about the uncertainties and what is unknown. However, in order not to overwhelm the user, the 
uncertainty information needs to be tailored  to the audience and the mode of communication.  
 
There are many guidelines for risk communication from diverse fields such as health, food safety, and 
technological and chemical risks. Some practical advice for communicating climate information more 
broadly is given in the The Uncertainty Handbook (Corner et al., 2015). Although some of the 12 
principles in the Handbook are aimed more at dealing with climate sceptics, many of the principles 
could also be applied in a climate services context: 
 

1. Manage your audience’s expectations 
2. Start with what you know, not what you don’t know 
3. Be clear about the scientific consensus 
4. Shift from ‘uncertainty’ to ‘risk’ 
5. Be clear what type of uncertainty you are talking about 
6. Understand what is driving people’s views about climate change 
7. The most important question for climate impacts is ‘when’, not ‘if’ 
8. Communicate through images and stories 
9. Highlight the ‘positives’ of uncertainty 
10. Communicate effectively about climate impacts 
11. Have a conversation, not an argument 
12. Tell a human story, not a scientific one 

4.1 Formats for communicating uncertainty  
 
In text 
Uncertainty can be conveyed in different ways, ranging from percentage probabilities and expressions 
of uncertainty to expressions of confidence and ambiguity, and indications of alternative scenarios 
(Morss et al., 2008; Van Bree & Van der Sluijs, 2014). Probabilistic predictions in particular can be 
communicated using precise numerical probabilities (for example, there is a 0.4 chance that X will 
occur), imprecise numerical probabilities (for example, the probability that X will occur is between 0.3 
and 0.6) or probability phrases (for example, it is improbable that X will occur). (Budescu et al., 2014). 
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While it is preferable to communicate probability with precision, it's crucial to recognise that overly 
precise numerical expressions of likelihood can be misleading. People interpret and act on probability 
information differently, and decisions may be different when uncertainty information is vague rather 
than precise (Budescu and Wallsten, 1987). Spiegelhalter and Riesch (2011) suggest tailoring the 
expression of uncertainty to the depth of uncertainty; if doubts exist about the model's adequacy, 
resulting probabilities should not be overly precise, and a range may be more appropriate. Deeper 
uncertainties may be communicated by expressing confidence in the model based on quality of the 
evidence and/or a judgement about the robustness of the analysis. However, caution is needed in 
conveying complex or ambiguous information, as some individuals, especially those with low numeracy 
or optimism, may become confused or risk-averse (Spiegelhalter et al., 2011). This underscores the 
importance of understanding how target audiences interpret and use the information (Morss et al., 
2008). 
 
 
Table 4.1: Verbal descriptions of quantified uncertainty (or likelihood) in the guidance note 
for the IPCC Fifth Assessment Report (Mastrandrea et al., 2011). Note phrases ‘More likely 
than not’ (for probabilities above 50%), ‘Extremely likely’ (for probabilities  above 95%) and 
‘Extremely unlikely’ (for probabilities below 5%) have also been used. Likelihood only 
describes one aspect of risk, a consequence dimension is required for a more complete 
description. 

Description   Likelihood of the Outcome 

Virtually certain  99-100% 

Very likely  90-100% 

Likely   66-100% 

About as likely as not  33-66% 

Unlikely   0-33% 

Very unlikely  0-10% 

Exceptionally unlikely  0-1% 

 
Since its Fifth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) has used a 
calibrated language of verbal descriptions of quantified uncertainty (termed likelihood) (Table 4.1) to 
convey imprecision in its predictions and conclusions. Here likelihood may be based on statistical or 
modelling analyses, elicitation of expert views, or other quantitative analyses (Mastrandrea et al., 
2011). However, studies have shown that these likelihood statements are often misinterpreted by 
laypeople, and assumed to be closer to 50% than intended. Supplementing the verbal descriptions with 
numerical ranges improves the understanding and leads to a better differentiation of the terms in Table 
4.1 (Budescu et al., 2014). 
 
Visualisation 
Visualisations are a powerful way to communicate information and graphics are widely used in 
communicating climate information. However, as with verbal descriptions, visual information may be 
interpreted differently by experts and laypeople. When not appropriately designed and disseminated, 
visualisations could be confusing or misinterpreted and lead to decisions that are not well-informed.  
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A key principle in visual communication is that graphs and maps need to be clear and almost self-
explanatory to the intended audience. This is a challenge for the visualisation of uncertainty 
information, which often requires some additional explanation. Especially “deeper” epistemic 
uncertainties are not easily presented as visualisations. Beven et al. (2018b) point out that the 
visualisation itself may also introduce further uncertainties, for example as a consequence of a 
particular interpolation or smoothing method that has been applied, or because the user may not 
interpret the graphical information as intended. Visualisations that are made too precise or detailed, 
for example, may induce an undue belief in the model performance that is not warranted by the 
uncertainty in the result (Beven et al., 2018b). 
 
While the simplest way to display uncertainty information in a map is perhaps to show two maps side 
by side, with one map showing the actual values and the other a measure of uncertainty (such as the 
standard deviation or signal-to-noise ratio). As Kaye et al. (2012) point out, this approach has the 
obvious disadvantage that it can be problematic to read both value and uncertainty simultaneously, as 
mentally overlaying maps is difficult. Kaye et al. (2012) proposed a number of guidelines for 
representing both magnitude and uncertainty in mapping climate data. These include: 
 

• use a sensible sequential or diverging colour scheme;  
• use appropriate colour symbolism if it is applicable; 
• ensure the map is accessible to everyone,  including for example colour blind people; 
• use a data classification scheme that does not misrepresent the data; 
• use a map projection that does not distort the data; 
• attempt to be visually intuitive to understand. 

 
Kaye et al. (2012) illustrated their approach by using a bivariate technique that adjusts the hue of a 
small palette of colours to show the mean or median of a variable and the saturation of the colour to 
indicate a measure of uncertainty in this value. However, as Daron et al. (2015) point out, there is still 
limited empirical evidence of how different individuals and groups interpret different visualisations of 
climate data, potentially leading to misinterpretations. It is important to be aware that, by translating 
data into information and by using different visualisation styles and techniques tailored towards a 
specific user community, inherently a layer of interpretation is being added (Daron et al., 2015). 
Collecting empirical evidence on how the audiences from diverse backgrounds interpret climate 
visualisations is, however, not a widely adopted practice. 
 
 
Storytelling 
Recently, storytelling has received an increasing amount of attention as a means to communicate 
climate information to a non-technical audience. Telling a story means presenting information in a 
narrative format, offering a way of building more sustainable and meaningful engagement because 
people are more used to communicating information through stories than graphs and numbers (Corner 
et al., 2018). Not only does the use of narratives help audiences understand complex and abstract 
science issues, but it also makes them easier to remember and to process relative to traditional forms 
of scientific communication. 
 
Shepherd et al. (2018) argue that a storyline approach may be an effective way of communicating 
uncertainty in the physical aspects of climate change. They define a storyline as a physically self-
consistent unfolding of past events, or of plausible future events or pathways. The emphasis of a 
storyline is on a qualitative understanding rather than quantitative precision. No a priori probability is 
assigned to a particular storyline; instead, the emphasis is placed on understanding the driving factors 
involved and the plausibility of high-impact events.  



 
                                                                           

D2.3 Preliminary best practices in climate uncertainty quantification and communication | 25 
 

 
Shepherd et al. (2018) identify four benefits of using a storyline approach. Storylines can enhance risk 
awareness by framing risks in an event-oriented way, aligning with how people perceive and respond 
to risk. A storyline approach can also strengthen decision-making by allowing backward planning from 
specific vulnerabilities, incorporating climate data with other factors to address compound risks. 
Additionally, storylines provide a physical basis for managing uncertainty, enabling the use of credible 
regional models. Lastly, they help explore plausible boundaries, preventing false precision and 
surprises. Storylines also offer the opportunity to link the physical and human aspects of climate 
change. In short, when co-developed by scientists and stakeholders, event-based storylines can 
provide a useful way of communicating and assessing climate-related risk and feed directly into a  
specific decision-making context (Sillmann et al., 2021). In addition, Barclay et al. (2023) demonstrate 
there may also be benefits to the “storyteller” themselves, as it may help rationalising their 
understanding and experiencing of complex, uncertain situations.   
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5 Examples of uncertainty assessment and 
communication 

 
The previous sections summarise what the literature has to offer on communicating uncertainties in 
climate information.  We also wanted to gather some information about if and how these methods are 
used in practice. In this section we will present a number of examples of how the concept, methods 
and practices with regards to the evaluation and communication of uncertainty are implemented by 
the climate services community. With the exception of the first case study, the examples were 
collected from the Climateurope2 community during an online workshop on communicating climate 
uncertainty that was held in November 2023. In total, 83 people participated in the workshop. Three 
lectures were given by representatives from KNMI, DNV and the Red Cross / Red Crescent. During 
the workshop, participants discussed how users of climate information deal with uncertainties and 
how providers of climate services should communicate about uncertainties in ways that enable users 
to extract the information they need. Below we introduce the uncertainty communication framework 
used by the IPCC and summarise relevant inputs from the three workshop lectures.  
 

5.1 IPCC AR6 
The IPCC framework for characterising knowledge and uncertainties (Mach et al. 2017) is a single 
framework (Figure 5.1) that could be applied consistently across working groups, spanning diverse 
disciplines and topics. This shared framework aimed to increase the comparability of assessment 
conclusions across all topics related to climate change, from the physical science basis to resulting 
impacts, risks, and options for response. 
 
The diagram in figure 5.1 illustrates the process IPCC AR6 authors used to evaluate and communicate 
the state of knowledge in their assessment. The process begins with evaluation of evidence and 
agreement (steps 1–3). Where possible, authors then evaluate confidence, synthesising evidence and 
agreement in one qualitative metric (steps 3–5). Where uncertainties can be quantified 
probabilistically, authors subsequently evaluate likelihood or a more precise measure of probability 
(steps 5–6). Note that the likelihood categories should be considered to have “fuzzy” boundaries (step 
6 (CCSP, 2009)). Unless otherwise specified, assessment conclusions characterised probabilistically are 
underpinned by high or very high confidence. Authors present evidence/agreement, confidence, or 
likelihood terms with assessment conclusions, communicating their expert judgments accordingly. 
Example conclusions drawn from the IPCC AR6 are presented in the box at the bottom of the figure. 
(Mach et al. 2017) 
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Figure 5.1: The IPCC AR6 approach for characterising understanding and uncertainty in 
assessment findings. The diagram illustrates the step-by-step process authors use to 
evaluate and communicate the state of knowledge in their assessment (Mastrandrea et al., 
2010). Figure adapted from Mach et al. (2017). 
 
 

5.2 National climate scenarios : KNMI’23 
The Royal Netherlands Meteorological Institute (Koninklijk Nederlands Meteorologisch Instituut - 
KNMI) is a national knowledge institute for weather, climate and seismology. The KNMI’23 climate 
scenarios (KNMI, 2023) are four new scenarios which outline what the future climate in The 
Netherlands could look like. With the new climate scenarios, KNMI offers guidelines for policy advisers 
and other professionals so they can make adequate decisions to ensure a safe, liveable and prosperous 
Netherlands in a changing climate. Janette Bessembinder from KNMI kindly shared with us the benefit 
of her experience of communicating climate information and uncertainty to wider society at the 
Communicating Climate Uncertainty workshop held by Climateurope21. 

 
1 https://climateurope2.eu/news-events/events/events/communicating-climate-uncertainty  

https://climateurope2.eu/news-events/events/events/communicating-climate-uncertainty
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Establish the idea of uncertainty 
The first step is to establish the idea that there is not just one prediction for the future of the climate.  
KNMI’23 does this by presenting information in terms of two scenarios, one associated with high CO2 
emissions and another with low CO2 emissions.  The simple act of presenting two possible futures  
conveys the concept that the future is not known (is uncertain) and, more subtly, that in the long-term, 
the main source of that uncertainty is uncertainty associated with how humans will collectively behave. 
 
Present an even number of climate projections 
Climate communication practitioners should be aware of the impact of visual information. An audience 
will often interpret the middle or central projection of future climate as being the most likely when in 
fact no likelihood can be attributed. To avoid this bias, practitioners can present the audience with an 
even number of projections. Giving an even number of projections implicitly encourages the audience 
to think about which of the projections is the most relevant for their specific topic of interest.  
 
Consider the most relevant climate risks 
Climate communication practitioners should consider which are the most important climate risks for a 
specific audience. In The Netherlands there are distinct risks associated with dry years and with wet 
years, and sea-level rise is also a major concern.  The most probable risks are often not the most 
relevant risks, so the simulated scenarios that inform an analysis should be those that do the best job 
at representing the risk situation that is of particular concern. 
 
KNMI’23 uses a four quadrant framework of high emissions vs low emissions (representing uncertainty 
about future socio-economic and technological developments) and drier climate vs wetter climate 
(representing uncertainty about the climate system). The framework is used to convey an indication of 
the severity of climate risk factors for temperature change, wetter winters, extreme summer showers, 
drought, and sea-level rise. (figure 5.2) 
 
This four quadrant format is able to convey whether year on year variability of a climate risk is to be 
expected. The severity of risk factors to do with temperature change and sea-level rise are only 
dependent on the emissions scenario. The severity of risk factors to do with wetter winters, extreme 
summer showers, and increased droughts are also dependent on whether the year is particularly wet 
or particularly dry.  
 
The four-quadrant framework adopted by KNMI presents climate uncertainty in terms of a set of 
threats for which to be prepared.  Information about threats which are specific and relevant for an 
audience empower climate action. 
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Figure 5.2: The four KNMI’23 scenarios for climate change in the Netherlands. The number 
of small blocks represents the extent of climate change around 2100 compared to 1991 -
2020. The four-quadrant framework conveys the severity of climate risk factors associated  
with low and high CO2 emissions and wetter or drier climate. Source: KNMI (2023). 
 
 
Include the lived experience of the audience 
For many people, the year-to-year variability of the climate system is more important and impactful 
than the slow shift of long-term climate means. Information about a projected future can be made 
more tangible and less abstract when it is framed in the context of the lived experience of the audience.   
 
Including year-to-year historical variability on graphs of historical and projected climate trends gives 
the audience an appreciation of what the variability they have experienced looks like in the context of 
the information that is presented about the future.  For time series plots, this could be the use of 90% 
shading to show both the variability of the past climate as well as that of a projected future, with data 
for the year-to-year variability of the historical period overlaid (as in figure 5.3a).  For box plots this 
could be overlaying the historical statistics with annual data points (as in figure 5.3b). 
 
Presenting historical data using the same method as data for the projected future, with context via a 
representation of year-to-year variability, makes the information on the graph easier to understand. 
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Figure 5.3:  Examples of making climate graphs easier to understand by using the same 
method to present both historical data and data for future projections, and providing 
context via a representation of the year-to-year variability of the historical period. a) Time-
series of historical and projected summer temperature for the Netherlands (KNMI, 2023).  
b) The annual number of tropical days (observed and projected) for the Netherlands.  
 
 
 
Using maps 
An effective way to convey the geographical distribution of how the behavior of a climatological index 
might be expected to change in the future is with a contour map. However, if the communication only 
provides one future instance it would convey an implicit bias towards the chosen scenario. The 
uncertainty of the future climate can be conveyed by showing at least two instances from different 
scenarios.  
 
People like to have access to climate information that is local to them. When presenting local 
information, it can be better to convey the values of climate indicators in terms of their absolute values 
rather than as percentage changes. There is an implicit assumption that data presented as a percentage 
change is true for the whole of an area rather than being specific to a locality. 
 
The language of uncertainty 
Much of the language that we use as climate scientists can have a very different meaning in public life, 
this is particularly pertinent for the topic of uncertainty communication. It can be better to use 
commonly understood descriptive language in place of scientific terminology.  For instance, rather 
than using the word “uncertainty” which implies ignorance, a better choice could be the word “range”.  
But if the word uncertainty can not be avoided then it should be clearly explained. More examples of 
commonly misunderstood climate science terminology can be found in table 5.1 . 
 
Emphasising uncertainties too much may leave people “paralyzed” and unsure of how to act.  In climate 
change communication it is better to focus on what is known first. e.g. “all climate scenarios show that 
temperatures and extreme precipitation increase, even though there are some uncertainties”, rather 
than “there are many uncertainties about climate change, but we know that temperatures will change”. 
However, we should not obscure uncertainties. 
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Table 5.1: Examples of climate science terminology that have the potential to be 
misunderstood by the public and alternative options.  

 
 

5.3 Risk Assessment: DNV 
DNV2 are experts in assurance (protection against events) and risk management for industry with a 
stated purpose to safeguard life, property and the environment. Andreas Hafver from DNV kindly gave 
us the benefit of his insights on risk management from an industry perspective and its relationship to 
uncertainty at the Communicating Climate Uncertainty workshop held by Climateurope2. 
 
Uncertainty is a part of the risk and should not be used to take risk less seriously.  In fact more 
uncertainty is a reason to take a risk more seriously. However, people don’t like to hear about 
uncertainties, they want to have numbers and clear recommendations.  Nevertheless, we should 
harness the power of uncertainty, because with an awareness of uncertainties comes an ability to 
assess risks more critically. More confidence can be placed in assessments of risk that are clear, in spite 
of the uncertainties. 
 
Understanding Risk 
 
There are many definitions for risk, a few examples are listed below: 
 

• Cambridge Dictionary: “the possibility of something bad happening” 
• IPCC AR6: “the potential for adverse consequences” 
• ISO 31000: “the effect of uncertainty on objectives” 
• ISO/IEC 61508: “combination of the probability of occurrence of harm and the severity of that 

harm” 
 
In general, the principle of risk is an assessment of the likelihood (degree of certainty) about a set of 
consequences that are either wanted or unwanted.  

 
2 https://www.dnv.com/about/index.html#  

https://www.dnv.com/about/index.html
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A risk can be described in terms of a two axis framing of its consequences. Some consequences are 
wanted while others are unwanted, and some consequences are certain while others are uncertain.    
 
The severity of the consequences of a risk will be assessed differently by different stakeholders who 
will have different objectives, different knowledge and different ways of knowing.  The values and 
objectives of a society will also change through time and things that were previously not considered 
as risks become important to consider and vice versa. 
 
Risk metrics and assumptions 
Risk assessments often communicate risk with plots showing quantitative risk metrics (Figure 5.4). For 
example risk matrices of severity and likelihood, risk maps showing the geographical distribution of 
risk, risk radars which show how a range of scenarios score on different parameters, exceedance 
curves that show the frequency of events and their impact, and forecasts of some quantity of interest 
with some uncertainty around the predictions with maybe a critical limit to show uncertainty about 
when the limit will be reached. 
 

 
Figure 5.4: Examples of quantitative metrics for communicating risk.  
 
 
However, risk is more than what we can quantify with metrics.  Any risk assessment involves choices 
and assumptions as part of the analysis.  The metrics presented to describe a risk will only capture 
aspects of the full risk picture. Tacit assumptions made as part of the risk assessment process have the 
potential to obscure a major part of the risk picture. For a more complete picture of the risk, 
quantitative metrics could be accompanied by an evaluation which includes: the rationale for the 
metric; properties of the evidence used; degree of consensus; criticality of the assumptions; and the 
location, nature and degree of uncertainty (see sections 1.2 and 3).   
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Figure 5.5: Quantitative metrics presented to summarise an assessment of risk are only part 
of the full picture. An evaluation of the assumptions made in the risk assessment process 
should also be communicated.  Note that tacit assumptions have the potential to obscure a 
major aspect of the risk (see section 3 for more on the role of assumptions).  
 
However, it is not always appropriate or indeed useful to communicate risk using quantitative methods 
(see also section 4 and 5.1).  Even if a quantitative analysis is possible it may not be necessary, 
sometimes it is sufficient to provide a qualitative description of the risk to support a decision. On 
occasions where it is necessary to be more precise, the precision of the risk description should match 
what is supported by the knowledge. 

5.4 Climate Interventions: Red Cross - Red Crescent Climate 
Centre 

The mission of the Climate Centre is to support the Red Cross and Red Crescent Movement and its 
partners in reducing the impacts of climate change and extreme-weather events on vulnerable people.  
Christopher Jack is a climate science expert with the Climate Centre who is primarily engaged with 
forecast based finance and anticipatory action. Chris has become increasingly involved and passionate 
about integrating climate science into collaborative learning, co-production, and transdisciplinary 
action research processes.  We are grateful to Chris for sharing his experience in this field with the 
Communicating Climate Uncertainty workshop held by Climateurope2. 
 
Humanitarian Sector  
Aid interventions in the humanitarian sector aim to limit the impact of rapidly emerging and evolving 
crises by anticipating emerging and evolving crises over weeks through months and possibly years. 
The humanitarian sector is characterised by high complexity with compounding and cascading risks 
and impact, high uncertainty with low quality or no data related to vulnerability as well as climate, and 
a high cost of failure. Failure to anticipate impacts can cost a lot more than acting in anticipation. The 
mis-allocation of funding and resources can cost lives. Within complex humanitarian contexts the 
relative contribution of weather and climate compared to other factors influencing a crisis is not always 
clear. 
 
Development Sector 
Aid interventions in the development sector aim to enable, support and encourage development in the 
face of climate variability and long-term change. The development sector is characterised by high 
complexity of climate risk governance (Who makes what decisions? Where does the money come 
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from? There are multiple and contested agendas), and high uncertainty with lots of actors including 
consultants and climate service providers. From a user perspective there is uncertainty about where 
to get information (who to listen to and which portal to use).  Therefore building trust and relationships 
is very important (who to trust and why to trust them). 
 
Anticipatory Action 
With anticipatory action, a warning of a crisis event allows action to be taken before the impacts occur.  
Forecast based Finance (FbF) is an example of an Early Action Plan (EAP) mechanism that enables 
disaster preparedness through humanitarian funding for early action based on in-depth forecast 
information and risk analysis. The release of funds to trigger early actions is agreed in advance and is 
based on forecasts exceeding specific thresholds (figure 5.6). 
 

 
Figure 5.6: Early Action Plan (EAP) validation steps (Heinrich and Bailey, 2020) . 
 
 
1. Risk assessment. Historical impact reports are used to identify risks, however, there remains a lot 
of uncertainty about how events impact communities.  Impact reports require a broad participatory 
process involving national meteorological services and disaster management agencies collaborating 
with government and communities to identify beneficiaries (Who is most vulnerable? Who will benefit 
the most?).  Broad involvement is used to achieve collectively supported decisions.   
2. Identify forecasts. Forecasts from local institutions are prioritised as they will have a mandate and 
early warning systems in place. Trust in and a sense of ownership of local forecasts can be more 
important than forecast skill. 
3. Define impact level. When will we trigger? The funding can’t support lots of false alarms so 
organizations aim to trigger only for high impact (1 in 5 years) events. Forecast skill may require 
accepting a certain number of false alarms or misses. It is important to collectively agree on an 
acceptable probability of false alarms and misses as these can degrade trust if the approach is not 
collectively owned. Collective agreement is difficult but is a core tenant of managing uncertainty in 
this context. 
7. Multiple flexible triggers. Some uncertainty can be managed by using multiplied staged triggers. The 
first trigger has a higher false alarm rate but activates low cost preparedness actions. The second 
trigger has a lower false alarm rate and may even be a STOP for action. Flexible triggering moves away 
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from “objective” triggers and allows for expert consensus on triggering.  This allows for unanticipated 
factors not captured by the trigger model to be included (e.g. emerging conflict). 
 
Transparency and trust 
Communication formats should transparently convey the nature of uncertainty being communicated 
and be readily comprehensible to ensure that decisions can be made based on an understanding of the 
uncertainties. Traditional, scientific formats for communicating uncertainty, such as technical graphs, 
can be difficult for non-scientists to comprehend. Although simplified information may be more easily 
understood, it may not provide sufficient depth of information to inform decisions. Finding the right 
balance may be best achieved using co-production (Coventry et al., 2019). 
 
Trust in climate information and those who communicate information should be measured and 
evaluated to assess how communication and engagement activities influence trust in information. 
Stakeholders often equate uncertainty with ‘not knowing’ and/or a lack of accuracy. This can reduce 
trust in using the information and in turn prevent action. Measuring trust can help identify 
communication approaches that foster shared understandings of uncertainty (Coventry et al., 2019). 
 
Climate risk narratives and storylines 
There is strong evidence that people use narratives to capture the essential meaning of complex 
evidence (see also section 3). When presented with complexity, people gravitate towards constructing 
a narrative. Even if someone is presented with a scientific graph, what they take away will be a 
narrative about what the graph means, and that meaning will be different for different people.  Just as 
risk is different for different people, the way they engage with complexity is different too. People also 
tend to hold on to existing narratives and seek evidence that confirms these (confirmation bias). 
 
 

   
Figure 5.7: Understanding existing risk narratives and the co-creation of new climate risk 
narratives and adaptation pathways towards climate resilience for informal settlements in 
Lusaka, Zambia. Climate science information was presented during this process, such  as 
flood maps from high resolution modelling, but it was available as print -outs on the walls 
and did not drive the narrative.  
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Collaboratively developing climate risk narratives or storylines begins by taking time to understand 
existing narratives within a particular decision context (figure 5.7). Until a climate communication 
practitioner understands existing narratives and how people are thinking about risk and decision 
making within these spaces it is very hard to introduce climate information. Once a practitioner has an 
idea of existing narratives, trust can be built through mutual learning, embracing the diversity and 
contradictions of people with competing views and understanding. Working with humility and 
transparency is needed to co-create new Climate Risk Narratives. 
 
Climate scientists need to understand that they bring only one part of the information into a complex 
context.  The climate component is not superior or dominant compared to other parts of the context. 
Therefore, scientists need to work collaboratively to decide how to interrogate the uncertainty of 
climate model projections and allow everyone to engage with the assumptions that are made.  For 
instance, average rainfall changes were not considered to be the main concern for Lusaka and so were 
not included in the scenario analysis. 
 
Many of the responses to the different climate risk scenarios were very similar (once the decision 
spaces and funding constraints had been worked through) (figure 5.8), so perceived uncertainty about 
what action to take to build resilience became clearer. 
 

 
Figure 5.8: Climate Risk Narratives / Storylines for Lusaka, Zambia for three scenarios: 1. 
Hotter & drier, 2. Warmer & more erratic and extreme rainfall, 3. Warmer & more extreme 
rainfall. 
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Two strong pathways emerged: a strong engineering/planning pathway with a flood masterplan and 
large-scale drainage, and a separate pathway focused on local governance: who is involved in decision 
making? Local area development planning was followed up with financial resources to enable locally 
lead implementation. 
 
The climate risk narrative/storylines process resulted in shifts in local climate governance. Ground-
water recharge conservation areas were implemented. Finance was allocated to local ward 
development committees to address local climate risks (e.g. flooding) in ways that they felt were 
appropriate. And a community of practitioners was built that included city officials who were engaged 
in the decision making and had a positive impact. 
 
Good decisions 
Recognising that in general each decision maker has different demands –even those in the same 
geographical location and in the same sector, e.g. two farmers with adjacent plots planning to plant 
the same crop but considering different types of seeds-, “good” or “bad” decisions can mean 
completely different things. 
 
Assuming that the demand has been correctly identified, and hence what is beneficial (“good”) in order 
to satisfy that demand, at the end of the day “good” decisions are what is aimed for... But what are 
good decisions?  
 
Any communication of climate information should be informed by an understanding of: 
 

• How decisions (especially assumptions on the pathway from science to decision making) are 
really made and by who. 

• How risk is already perceived and managed, heterogeneity is difficult to capture in risk models. 
• What the implications of “bad” decisions are. 

 
Climate communication is deeply entangled with trust, humility, mutual learning and contested 
perspectives. How to do this communication within a standardised approach of climate services in the 
face of contextual complexity and differing perspectives remains a challenge. 
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6 Concluding Comments: Emerging Themes 
 
This section includes concluding remarks, in the form of key “emerging themes” or lessons learnt. 
 
Start with the most relevant risks 
An exploration of vulnerabilities can be used to discover which climate risks are of most concern. From 
there a climate communication practitioner or risk analysis facilitator (ideally in collaboration with the 
clients they are supporting) can discern which aspects of climate information are most relevant to 
those risks and hence the relevant uncertainty space to describe. To support the work of climate 
communication practitioners a climate service provider will need to provide sufficient information to 
enable the relevant uncertainty information to be extracted. 
 
Standard approach to uncertainty descriptions 
The scope of climate science is broad. The implications of its findings need to be understood by many 
different research communities and also be communicated to wider society.  A standard approach to 
describing and quantifying uncertainty will facilitate the passing of information between different 
communities of practice. Such an approach should consider not only the climate science component, 
but also the complexities regarding socio-economic vulnerability, and hence social sciences should be 
involved. 
 
Use language the audience is familiar with (don’t say uncertainty) 
The vocabulary of science can have very different meanings in public life. Therefore, when dealing 
with climate services and decision makers, it is usually better to use commonly understood descriptive 
language in place of scientific terminology, along with multiple contextualised examples illustrating the 
concepts and approaches. Particular care should be taken with uncertainty communication, for 
instance, rather than using the word “uncertainty” which implies ignorance, a better choice could be 
the word “range”, and rather than presenting a likelihood as a percentage instead refer to it using the 
framing  of odds. 
 
There are multiple ways to evaluate and communicate uncertainty 
Decision makers require the best, reliable information to optimally accomplish their job. Although a 
measure of uncertainty must be always conveyed, there are multiple ways to measure and 
communicate it. The most used way is to communicate uncertainty via probabilities of occurrence (or 
not occurrence) of a certain event, but very often decision makers consider the use of odds -and 
relative odds- more understandable and actionable than actual probabilities. It is also possible to 
communicate uncertainty by a combination of the expected value (e.g. the ensemble median) and 
uncertainty bars (e.g. the ensemble interquartile range). In other contexts, it may be more appropriate 
not to communicate probabilistic information at all and instead explore the use of plausible storylines 
to help communicate climate risk and highlight specific vulnerabilities. 
 
Use communication about uncertainty to build trust 
The existence of high uncertainty should be seen as a reason to engage with information, particularly 
if it relates to a vulnerability.  Climate services should be transparent about the uncertainty evaluation 
of their information.  With an awareness of uncertainties comes an ability to assess risks more critically. 
More confidence can be placed in assessments of risk that are clear, in spite of the uncertainties. 
 
Precision of information should be relevant to the situation 
General statements of uncertainty can be sufficient. Even if a quantitative analysis is possible it may 
not be necessary. The precision of a risk description should match what is needed. The presenting of 
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high resolution data will lead audiences to assume a high degree of certainty that may not be justified.  
Risk descriptions should match what the knowledge supports. 
 
Understand existing narratives 
People use narratives to capture the essential meaning of complex evidence. Until the existing 
narratives and how people are thinking about risk and decision making are well understood, it is very 
hard to introduce actionable climate information and related services. Once there is a clear idea of 
existing narratives, it is key to build trust through mutual learning, embrace the diversity and 
contradictions of people with competing views and understanding, and work with humility and 
transparency to co-create new climate risk narratives or storylines of plausible future events. 
 
Be aware of deep uncertainties 
The conventional approach to representing uncertainty in climate services is probabilistic, typically 
based on ensembles of climate model simulations. In the face of deep uncertainties, the limitations of 
this approach are becoming increasingly apparent. It is therefore important to extend existing 
methodologies to include strategies for accounting for and communicating deep uncertainty, including 
the recording of assumptions made in the analysis process and evaluating the impact of these on the 
final outcome or decision, and the co-creation of narratives or storylines to improve risk awareness 
and strengthen decision-making. 
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